
COMPARING TECHNIQUES FOR TETRAHEDRAL MESH GENERATION

M. A. S. Lizier
Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, Brazil

lizier@icmc.usp.br

J. F. Shepherd
Sandia National Laboratories - Albuquerque, NM - USA

jfsheph@sandia.gov

L. G. Nonato
Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, Brazil

gnonato@icmc.usp.br

J. L. D. Comba
Instituto de Informática - Universidade Federal do Rio Grande do Sul, Brazil

comba@inf.ufgrs.br

C. T. Silva
SCI Institute - University of Utah - Salt Lake City, UT - USA

csilva@sci.utah.edu

Inaugural International Conference of the Engineering Mechanics Institute

Abstract

The growing importance of subject-specific modeling and simulation in medical applications has increased
the need for automatic techniques for creating high-quality meshes directly from medical data. We discuss
the main aspects related to volumetric mesh generation from iso-surfaces. We take a practical approach, and
the main focus of this paper is evaluating processing pipelines using widely available tools. In our processing
pipelines, we are trying to evaluate both the surface mesh and tetrahedral mesh quality, and their interac-
tions. For the iso-surface extraction, we explore a number of widely available tools, in particular, Afront[15],
CGAL[2], Macet[5], Dual Contouring[9] and Marching Cubes[11]. For tetrahedral mesh generation, we ex-
plore using TetGen[16], NetGen[13] and CAMAL[3]. We use VisTrails [1], a provenance-enabled workflow
system, for assembling the processing pipelines, and comparing the results. Our plan is to make our process-
ing pipelines available for the community, so that our results can be fully reproduced by others. In fact, our
hope is that the comparison methodology used here makes it easier for others to build and compare alternative
processing pipelines.

Introduction

Tetrahedral mesh generation from volumetric data is one of the most intricate problems
in modeling and simulation for medical applications. Difficulty comes from several com-
plex steps that are prone to numerical error which comprise the processing pipeline (see
figure 1). For instance, the iso-surface extraction step, typically employed to generate the
polyhedral surface mesh that bounds the simulation domain, can dramatically impact the
subsequent step of tetrahedral mesh generation, since this step is very sensitive to badly-
shaped elements in the input surface mesh. A great deal of effort has been spent to solve
each of these tasks independently, but little work has been done on evaluating the differ-
ent combinations of algorithms in each of these steps to determine how to obtain the best
results for a given situation.

1



3D image Surface mesh Volumetric mesh

Iso-surface
extraction

Tetrahedral
mesh generation

Oriented
surface mesh

Mesh orientation
and verification

Figure 1: The traditional pipeline for tetrahedral mesh generation from volumetric data
(disregarding the volume pre-processing).

In this work, we present an appropriated framework that allows a more elaborate investi-
gation of the several aspects involved in this pipeline, as well as, allowing for combination
of possible solutions at each step. Our work uses Vistrails [1], a provenance-enabled work-
flow system, for supporting the comparative analysis of the several different configurations.
Since each algorithm comprises a building block in the workflow, exploring other alterna-
tives such as replacing building blocks is naturally accomplished. The system also provides
complete provenance on the changes made to the processing pipeline by the user. Also,
comparison of different pipelines is easily performed since output can be sent to a spread-
sheet that allow simultaneous exploration of the results using the same views. Most impor-
tantly, all the results generated in a given experiment can be easily reproduced elsewhere
by simply sharing the Vistrail description, which allows others to add new comparisons or
other components.

In our current analysis we are considering five different isosurface extraction algorithms
(Afront[15], CGAL[2], Macet[5], Dual Contouring[9] and Marching Cubes[11]) and three
tetrahedralization methods (TetGen[16], NetGen[13] and CAMAL[3]). One of the inter-
esting results of our work is to show that a provenance-enabled, workflow analysis tool,
such as Vistrails, is of great usefulness in managing a large-scale comparison experiment.
We illustrate the effectiveness of Vistrails by summarizing the main results of comparing
different combinations of polyhedral and tetrahedral mesh generators.

Mesh Generation Tools

In this section, we briefly describe the algorithms utilized in the comparisons. Our intent
here is not to supply a detailed review about each technique, but highlight the compu-
tational and mathematical mechanisms these techniques are based on, thus making clear
their requirements and behavior.

Polyhedral Surface Mesh Generators

Afront: Afront is an advancing-front triangulation algorithm that can be applied to many
different meshing scenarios. It makes use of a guidance field to determine triangle sizing
that is adaptive to the curvature of the input surface, but also maintains smooth gradation
to prevent poor quality triangles from being created. The prototype implementation can be
used to generate optimized meshes from other meshes (remeshing), from volumes defined
on regular and irregular grids (isosurface extraction), and from point sets. It can be used to
mesh either the entire input surface or just a local region, and can preserve sharp features

2



that are annotated ahead of time (see Schreiner, et al., [15]).

Marching Cubes: Marching cubes is a well-known algorithm for extracting a triangle
mesh of an isosurface from a 3D scalar field. The algorithm proceeds through the scalar
field, taking eight neighbor locations at the corners of each cube within the base mesh, and
determining the triangles needed to represent the part of the isosurface that passes through
each cube. The individual triangles are fused into the desired surface. For efficiency, each
cube in the base mesh is assigned a template of predetermined triangle arrangements from
a precomputed list of 256 possible configurations based on where the isosurface intersec-
tions within the cube occur. Finally, each vertex of the generated triangles is placed in the
appropriate position along the cube’s edge by linearly interpolating the two scalar values
connected by that edge.

Macet: Marching Cubes is a popular choice for isosurface extraction from regular grids
due to its simplicity, robustness, and efficiency. However, one of the key shortcomings of
this approach is the quality of the resulting meshes, which tend to have many poorly shaped
and degenerate triangles. This issue is often addressed through post-processing operations,
including smoothing. While these improve the mesh, they do not remove all degeneracies,
and incur an increased and unbounded error between the resulting mesh and the original
isosurface. Rather than modifying the resulting mesh, the Macet algorithm modifies the
grid on which Marching Cubes operates before the mesh is generated. Considering the
edges of the Marching Cubes grid that contain intersections (active edges), the algorithm
applies transformations that change edge locations to improve the quality of the resulting
triangles. These edge transformations are embedded in the core of the Marching Cubes
algorithm and incur in an overhead of up to twice the time of the original algorithm, but
greatly increase the quality of the worst triangle in the extracted isosurface.

Dual Contouring: Dual Contouring is a feature-preserving, iso-surfacing method to ex-
tract crack-free surfaces from both uniform and adaptive octree grids. This technique can
be seen as an hybrid of the Extended Marching Cubes [10] and SurfaceNets [8] as it make
use of Hermite data and quadratic error function minimization to position the vertices of
the surface mesh (as Extended Marching Cubes) and the dual topology to connect such
vertices (as SurfaceNets) . Dual Contouring tends to generate better quality triangles than
Marching Cubes while still being very effective in representing sharp features, rendering
this surface mesh generation technique a good alternative to the popular Marching Cubes.

CGAL: CGAL is a C++ library that provides easy access to efficient and reliable geomet-
ric algorithms, including a surface mesh generation technique based on Delaunay triangu-
lation [2]. The algorithm implemented in CGAL uses the notion of ε-sample, a concept
widely employed in surface reconstruction from unorganized points, to build triangulated
surfaces that are topologically equivalent and geometrically close to the original surface.

Tetrahedral Mesh Generators

We have utilized two freely available tetrahedral mesh generation tools for ease of use and
availability. We have also included comparisons with a commercially available tetrahedral

3



mesh generation package.

TetGen: TetGen corresponds to a suite of techniques to generate different tetrahedral
meshes from three-dimensional point sets or domains with piecewise linear boundaries.
In particular, we use the module that computes the Constrained Delaunay Tetrahedraliza-
tion (CDT) from the isosurface mesh produced by one of the algorithms described in the
previous section. The TetGen implementation of the CDT is based on the incremental edge
flipping algorithm proposed in [6]. Since this algorithm preserves triangles in the bound-
ary, the edge flipping test is very sensitive to the quality of the input mesh, and in some
situations numerical problems are so severe that no CDT is generated.

NetGen: NetGen is an automatic 3D advancing-front tetrahedral mesh generator that ac-
cepts input from constructive solid geometry (CSG) or boundary representations (BRep)
from the STL file format. NetGen contains modules for mesh optimization and hierarchi-
cal mesh refinement. Netgen is open source based on the LGPL license, and is available
for Unix/Linux and Windows.

CAMAL: The CUBIT Adaptive Meshing Algorithm Library (CAMAL) [3] contains sev-
eral of the CUBIT [3] project’s mesh generation algorithms. CUBIT’s goal is robust and
unattended mesh generation of complex geometries, scalable to millions of elements and
thousands of parts. CUBIT is best known for its pioneering work on automated quadri-
lateral and hexahedral mesh generation, but also maintains robust triangle and tetrahe-
dral meshing technologies. The tetrahedral mesh generation tool included in CAMAL is
TetMesh-GHS3D[12], a package to automatically create tetrahedral meshes from of closed
triangular surface meshes, with little or no user interaction. The implementation is based
on the algorithm described in [7], and corresponds to another variation of a Constrained
Delaunay Triangulation, and is, therefore, sensitive to the quality of the input mesh and
may be prone to generate tetrahedral meshes with slivers if the boundary mesh does not
maintain high quality.

Comparisons

In this section we present a summary of the main results we have obtained in comparing
the different configurations for the tetrahedral mesh generation pipeline. Besides showing
these quantitative and qualitative results we show how useful Vistrails is in the organization
and management of the tests we have carried out. In fact, Vistrails makes the task of han-
dling the pipeline much more friendly and intuitive, as the whole pipeline can graphically
be depicted. Furthermore, the user can interact with the graphical workflow, changing com-
ponents or creating new branches. Figure 2 shows the Vistrails interface and the workflow
we have devised to verify how TetGen, NetGen, and CAMAL behave when Afront is used
as the surface extraction algorithm.

Figure 2 shows (highlighted on top of the workflow window) the box representing the
Afront algorithm. It is important to point out that by only changing the Afront box to
another surface mesh generation tool (Marching Cubes, for example), a completely new
set of tests can completed. Another important benefit provided by Vistrails is that all the

4



Figure 2: Vistrails interface: a) workflow employed to verify the behaviour of TetGen,
NetGen, CAMAL when Afront is used as surface mesh extractor; b) The box representing
the Afront algorithm.

tests conducted in previous run can be stored so as to keep the complete history of the
experiments.

Table 1 shows some results selected from the tests we have carried out. Figure 3 shows
the meshes of the silicium data set. The tests have been run on an AMD Opteron 242
processor (1.6 GHz) with 2 GB of RAM memory. NetGen has turned out to be less robust
than TetGen and CAMAL, as noted in the silicium data set, where the NetGen mesher was
not able to produce an appropriate tetraedral mesh for each of the given surface meshes. We
can also see from table 1 that the combination Afront-CAMAL tends to generate a larger
number of tetrahedra than other combinations, and the worst tetrahedron (we have used the
Scaled-Jacobian measure, provided by Verdict Library [14]) is generated when Marching
Cubes is used as surface mesh extractor.

Conclusion

We have provided comparisons for several surface (triangle) and volume (tetrahedra) mesh
generation tools on a collection of models. These tools were implemented in a provenance-
enabled workflow system utilizing VisTrails which enabled quick and easy comparisons
for timing, sizing and quality between the various methods. The tools highlighted are used
“out-of-the-box” and no additional optimization of the mesh was performed. Improved re-
sults for each of the tools may be possible. Because of the growing need for freely available
mesh generation tools for research purposes, this comparison was viewed as timely to pro-
vide data for varied research efforts to find and implement tools that will provide adequate
results, specifically for biomedical mesh generation activities.

5



REFERENCES REFERENCES

Figure 3: Silicium meshes from left to right: Afront, Macet, Dual Contouring, March-
ing Cubes, CGAL. Top to botton: Surface mesh, zoomed surface mesh, TetGen, NetGen,
CAMAL.

Acknowledgments: C. Silva is funded by the National Science Foundation (grants CCF-0401498, EIA-
0323604, OISE-0405402, IIS-0513692, CCF-0528201), the Department of Energy, and an IBM Faculty
Award. Mario A. S. Liziér is funded by CAPES-Brazil and L.G. Nonato is funded by CNPq-Brazil (grant
308292/2006-5). J. Comba is funded by CNPq-Brazil (grant 485853/2007-8).

References

[1] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo. Vistrails:
Enabling interactive multiple-view visualizationss. Proceedings of IEEE Visualization, 2005.

[2] J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces. Graph. Models,
67(5):405–451, 2005.

[3] The CUBIT Adaptive Meshing Algorithm Library, Sandia National Laboratories,
http://cubit.sandia.gov/camal.html, 2007.

[4] The CUBIT Geometry and Mesh Generation Toolkit, Sandia National Laboratories,
http://cubit.sandia.gov/, 2007.

6



REFERENCES REFERENCES

Model Surface Tool Tetra Tool Time # Tetra # Vertices Worst Tetra Mean Variance

Silicium

Afront
TetGen 35s 221k 71k 0.029 0.388 0.023
NetGen 230s 252k 78k 0.065 0.526 0.024

CAMAL 39s 521k 121k 0.069 0.643 0.016

Macet
TetGen 11s 68k 21k 0.015 0.400 0.027
NetGen 53s 52k 17k 0.046 0.432 0.027

CAMAL 9s 91k 23k 0.092 0.584 0.018

Dual Cont TetGen 14s 79s 24k 0.006 0.403 0.030
CAMAL 14s 88k 23k 0.024 0.571 0.021

M. Cubes
TetGen 175s 288k 77k 1e-05 0.321 0.037
NetGen 88s 69k 18k 0.005 0.473 0.041

CAMAL 18s 92k 23k 0.001 0.495 0.040

CGAL
TetGen 68s 352k 111k 0.034 0.355 0.030
NetGen 616s 518k 140k 0.093 0.593 0.019

CAMAL 100s 1396k 282k 0.138 0.652 0.013

Brain

Afront TetGen 194s 1407k 369k 0.024 0.387 0.026
CAMAL 1633s 16728k 2896k 0.025 0.649 0.014

Macet TetGen 234s 979k 234k 0.015 0.406 0.026
CAMAL 558s 5838k 1019k 0.102 0.641 0.014

Dual Cont TetGen 206s 827k 208k 0.013 0.397 0.027
CAMAL 567s 6382k 1109k 0.052 0.644 0.014

M. Cubes TetGen 337s 1471k 351k 9e-05 0.402 0.028
CAMAL 620s 5923k 1034k 0.059 0.634 0.016

CGAL TetGen 63s 439k 120k 0.025 0.362 0.030
CAMAL 238s 3561k 638k 0.160 0.654 0.013

Engine

Afront TetGen 1016s 5044k 1295k 1e-10 0.383 0.025
CAMAL 1710s 22956k 4284k 0.007 0.636 0.015

Macet TetGen 2012s 2364k 610k 0.008 0.397 0.028
CAMAL 655s 7091k 1337k 0.004 0.623 0.015

M. Cubes TetGen 68452s 7102k 1739k 1e-10 0.335 0.034
CAMAL 735s 6830k 1293k 1e-04 0.602 0.024

CGAL
TetGen 114s 697k 202k 0.030 0.368 0.033
NetGen 3340s 2806k 559k 0.089 0.691 0.012

CAMAL 199s 3047k 590k 0.097 0.636 0.014

Bonsai

Afront TetGen 604s 3649k 871k 0.010 0.389 0.024
CAMAL 2034s 20895k 3799k 0.014 0.644 0.014

Macet TetGen 1166s 1800k 433k 2e-04 0.401 0.027
CAMAL 761s 7424k 1346k 0.059 0.634 0.015

M. Cubes TetGen 41925s 5667k 1303k 1e-10 0.330 0.035
CAMAL 762s 6816k 1244k 2e-04 0.614 0.023

CGAL TetGen 117s 657k 197k 0.031 0.358 0.030
CAMAL 239s 4234k 786k 0.150 0.648 0.013

Table 1: Volumetric meshes

[5] C. A. Dietrich, C. Scheidegger, J. Schreiner, J. L. D. Comba, L. P. Nedel, and C. Silva. Edge trans-
formations for improving mesh quality of marching cubes. IEEE Transactions on Visualization and
Computer Graphics (to appear)., 2008.

[6] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. In
SCG ’92: Proceedings of the eighth annual symposium on Computational geometry, pages 43–52, New
York, NY, USA, 1992. ACM.

[7] P. L. George, F. Hecht, and E. Saltel. Automatic mesh generator with specified boundary. Comput.
Methods Appl. Mech. Eng., 92(3):269–288, 1991.

[8] S. Gibson. Using distance maps for accurate surface representation in sampled volumes. In VVS ’98:
Proceedings of the 1998 IEEE symposium on Volume visualization, pages 23–30, New York, NY, USA,
1998. ACM.

[9] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pages
339–346, New York, NY, USA, 2002. ACM.

[10] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive surface extraction from
volume data. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 57–66, New York, NY, USA, 2001. ACM.

[11] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm.
SIGGRAPH Comput. Graph., 21(4):163–169, 1987.

[12] M. Loriot. TetMesh-GHS3D v3.1 the fast, reliable, high quality tetrahedral mesh generator and opti-
miser, http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf, 2006.

[13] NETGEN - automatic mesh generator, Johannes Kepler University Linz,
http://www.hpfem.jku.at/netgen/, 2008.

7



REFERENCES REFERENCES

[14] Pébay, Thompson, Shepherd, Knupp, Lisle, Magnotta, and Grosland. New Applications of the Verdict
Library for Standardized Mesh Verification Pre, Post, and End-to-End Processing, pages 535–552.
2008.

[15] J. Schreiner and C. Scheidegger. High-quality extraction of isosurfaces from regular and irregular grids.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1205–1212, 2006. Member-Claudio
Silva.

[16] H. Si. On refinement of constrained delaunay tetrahedralizations. Proceedings of the 15th International
Meshing Roundtable, 2006.

8


